Entrepreneurship for Computer Science

LTV- Part II

Lecture 10,

Today...

- Last Session:
 - Lifetime value of an acquired customer (LTV)- Part I
- Today's Session:
 - LTV- Part II
- Announcements:
 - PS2 is due on Feb 11 by midnight
 - Quiz 1 is on Feb 18
 - CP1 is due on Feb 27 by midnight. *Each team will be given 12 minutes to present its findings in class.*

Outline

LTV Calculation

Present Value: Recap

- *Present value* is the result of discounting *future value* to the present
- In general, its formula can be stated as follows:
 - $PV = FV/(1+r)^n$, where
 - PV = Present Value
 - FV = Future Value
 - r = Discount Rate (or *rate of return*)
 - n = Number of Periods, which could be in years, months, weeks, etc.
- Related to the concept of the *present value* is the *net present value*

- Assume you want to invest in a business \$10,000
 - Can you pay off this investment in 3 years, assuming a discount rate of 5%?

- Assume you want to invest in a business \$10,000
 - Can you pay off this investment in 3 years, assuming a discount rate of 5%?

	Cash Outflow	Cash Inflow	Cash Inflow	Cash Inflow
Year 0	\$10,000	\$3,000/1.05 = \$2857.14	\$4,000/1.05 ² = \$3628.11	\$5,000/1.05 ³ = \$4319.18
Year 1		\$ 3,000		
Year 2			\$ 4,000	
Year 3				\$ 5,000

- Assume you want to invest in a business \$10,000
 - Can you pay off this investment in 3 years, assuming a discount rate of 5%?

	Cash Outflow	Cash Inflow	Cash Inflow	Cash Inflow	\sum Cash Inflows
Year 0	\$10,000	\$2857.14 ↑	\$3628.11	\$4319.18 ↑	\$10804.44
Year 1		\$3,000			
Year 2			\$ 4,000		
Year 3				\$5,000	

- Assume you want to invest in a business \$10,000
 - Can you pay off this investment in 3 years, assuming a discount rate of 5%?

	Cash Outflow	\sum Cash Inflows	(\[Cash Inflows - Cash Outflow]
Year 0	\$10,000	\$10804.44	\$10804.44 - \$10,000 = 804.44
Year 1		✓ YES	S, you can pay off your investment in 3 years
Year 2			
Year 3			

- Net Present Value (NPV) is a *capital budgeting tool* that can be used to analyze the profitability of a projected investment or project
 - NPV = PV(All Cash Inflows) PV(Cash Outflow)
 - If NPV > 0 accept; otherwise, reject!
- More formally, NPV = $\sum_{n=1}^{N} \frac{c_n}{(1+r)^n} C_0$, where
 - N = Number of time periods
 - C_n = Net cash inflow during period *n*
 - C₀ = Net cash outflow (or total initial investment)
 - r = Discount rate

Outline

Net Present Value

LTV Calculation

Key Inputs to Calculate LTV

1. Revenue channels

- This depends on your business model
 - E.g., One-time, up-front revenue channel, *if any*
 - E.g., Recurring revenue stream, like subscription fee, maintenance fee, or purchases of consumables, *if any*
 - E.g., Additional revenue opportunities like revenue from add-on products, *if any*
- 2. Gross margin for each of your revenue channels
 - Gross margin = price production cost
 - Note: "Production" cost does not include sales, marketing, administrative, and overhead (e.g., R&D) costs

Key Inputs to Calculate LTV

- 3. Retention rate
 - This is the percentage of customers who will continue to pay for your product
- 4. Life of product
 - This is the duration you expect your product will last before the customer either discontinues using it or purchases a replacement
- 5. Next product purchase rate
 - This is the percentage of customers who will buy a replacement product from you when the life of the current product ends

Key Inputs to Calculate LTV

- 6. Cost of capital rate for your business
 - This is how much it costs you (in debt or equity) to get money from investors for your business (it is actually the *discount rate*)
 - For a new entrepreneur who lacks a track record and is just starting, an appropriate number is between 35% and 75% (also, the riskier your venture is, the higher the number)

How to Calculate LTV?

• Algorithm:

5.

6.

- 1. for each year **y**
- 2. for each revenue channel in your business model
- 3. if in **y** the customer will replace your product
- 4. use "gross margin", "retention rate" (if αny), and
 - "next product purchase rate" to calculate your profit p
 - else
- 7. use "gross margin" and "retention rate" (*if any*)
- 8. to calculate your profit *p*
- 9. total_profit += *p*
- 10. calculate the *present value pv* of total_profit in *y*
- 11. LTV += *pv*
- 12. total_profit = 0

Example: "Widget"

- Assume a conceptual case of a company that makes a "widget"
- Widget's business model involves a one-time, up-front charge for the widget, alongside an annual recurring fee for maintenance

	One-time Revenue	Recurring Maintenance Revenue
Widget Price	\$10,000	15% of the up-front charge after a 6-month warranty period
Gross Margin	65%	85%
Retention Rate		100% in year 0 and 90% in subsequent years
Life of Product	5 years	5 years
Next Product Purchase Rate	75%	75%
Cost of Capital Rate	50%	50%

Towards Calculating LTV for "Widget"

- **Revenue Channel 1**: One-time, up-front payment for a widget
 - How much *profit* can be made out of this channel?

	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Cost of a Widget	\$10,000					\$10,000
Next Product Purchase Rate						0.75
Gross Margin of a Widget	0.65					0.65
Profit from a Widget	(10,000×0.65) = \$6,500					(10,000×0.75×0.65) = \$4,875

Towards Calculating LTV for "Widget"

• **Revenue Channel 2**: Maintenance for a widget

• How much *profit* can be made out of this channel?

	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Cost of Maintenance	\$750	\$1500	\$1500	\$1500	\$1500	\$750
Retention Rate (say, r)	1	0.9	0.9	0.9	0.9	
Cumulative r (= r ^y , where y = no of years after year 0)	1	(0.9 ¹) = 0.9	(0.9 ²) = 0.81	(0.9 ³) = 0.729	(0.9 ⁴) = 0.656	0.656
Next Product Purchase Rate						0.75
Gross Margin of Maintenance	0.85	0.85	0.85	0.85	0.85	0.85
Profit from Maintenance	(750×1×0. 85) = \$637.5	(1500 × 0.9 × 0.85) = \$1,147.5	(1500 × 0.81 × 0.85) = \$1,032.75	(1500 × 0.729 × 0.85) = \$929.48	(1500 × 0.656 × 0.85) = \$836.40	= (750 × 0.656 × 0.75 × 0.85) = \$313.65

Calculating LTV for "Widget"

• Lifetime Value of An Acquired Customer (LTV):

	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Profit from a Widget	\$6,500					\$4,875
Profit from Maintenance	\$637.5	\$1,147.5	\$1,032.75	\$929.48	\$836.40	\$313.65
Sum of Profits	\$7,137.50	\$1,147.5	\$1,032.75	\$929.48	\$836.40	\$5,188.65
Cost of Capital Rate	0.5	0.5	0.5	0.5	0.5	0.5
Present Values of Profits	(7137/1.5 ⁰) = \$7,137	(1147.5/1.5 ¹) = \$765	(1032.75/1.5 ²) = \$459	(929.48/1.5 ³) = \$275.4	(836.4/1.5 ⁴) = \$165.24	(5188.65/1.5 ⁵) = \$683.285
LTV	\$9485.425					

Important Considerations

- The business model decision is very important
 - Your choice of business model can greatly impact your LTV
 - Recurring income:
 - Pros: can increase revenue
 - Cons: might necessitate additional capital from investors up-front (especially, if there are no up-front charges); hence, potentially increase cost of capital
 - One-time, up-front charge:
 - Pros: can reduce the amount of capital needed initially; hence, potentially decrease cost of capital
 - Cons: might not appeal to customers

Important Considerations

- LTV is about *profit*, not revenue
 - A common mistake among entrepreneurs is to tally up revenue (not profits) out of the business model channels
 - Gross margin (i.e., profit and NOT revenue) and cost of capital rate are integral to determining an accurate LTV
- Gross margins make a big difference
 - Try to wrap your potentially lower-margin core product with high-margin add-on products, services, or upselling opportunities (e.g., analytics reports, which might significantly appeal to customers!)
 - E.g., LARK started out with a silent alarm clock, which did not lead to sustainable business until they offered expert sleep analysis reports to end-users

Important Considerations

- Retention rates are critical as well
 - A small increase in your retention rate leads to a significant improvement in your cumulative profit
- Overhead costs are not negligible
 - To simplify LTV calculations, overhead costs (e.g., R&D and administrative expenses) are excluded
 - These costs might be high though!
 - Hence, LTV should be substantially larger than COCA

Cost of Customer Acquisition (COCA)

Cost of Customer Acquisition (COCA)

Optimism is good, but be careful not to blind you from the <u>real</u> cost of customer acquisition. It is essential that you do realistic calculations and then make appropriate adjustments over time.

Cost of Customer Acquisition (COCA)

- How much does it cost you to bring a new customer to your product?
 - In other words, how much is your COCA?
- In calculating your COCA, you must quantify <u>all</u> the sales and marketing costs involved in acquiring a <u>single average</u> customer in steady state
 - Examples of sales and marking costs include salesmen salaries, admin support, travel, entertainment, trade shows, phone, Internet, website developments, computers, etc.,
 - This necessitates that you understand your sales process very well!
 - Production, R & D, finance and administrations, and any other overhead costs are not included

COCA vs. LTV

• For almost all new ventures, COCA will start very high and decrease over time (*opposite to LTV*)

How to Calculate COCA?

- To calculate COCA, you need three metrics:
 - 1. Total Marketing and Sales Expenses over Time or TMSE(t)
 - 2. Install Base Support Expense over Time or IBSE(t)
 - This is the cost to retain existing customers
 - 3. New Customers over Time or NC(t)
- COCA = (TMSE(t) IBSE(t))/NC(t)
- COCA is typically calculated over 3 consecutive time periods, namely, short-term (e.g., 1st year of sales), medium-term (e.g., 2nd and 3rd years of sales), and long-term (e.g., 4th and 5th years of sales) periods
 - Depending on your venture, these time periods may be different!

- Oil drilling typically produces "associated gas" as well, which is costly to deal with and problematic for the environment
- Assume a new venture, namely, Associated Gas Energy, with a GTL (Gas To Liquid) technology to convert "associated gas" into crude oil at a cost of \$70 to a conservative customer
- The customer can be convinced to buy using old-fashioned *direct sales methods*, especially at the beginning

- Year 1 Plan:
 - Hire an experienced sales person (say, full package at \$175K/year)
 - Hire a tech sales support person (say, full package at \$125K/year)
 - Hire a consultant to help break through the initial customer inertia and to get all regulatory issues taken care of (say, full package at \$150K/year)
 - Spend on travel (say, \$24K), develop ad material (say, \$15K), conduct a trade show (say, \$30K), and develop a website (say, \$10K)
 - Expected number of customers is 1

- Years 2 & 3 Plans:
 - "Fire" the consultant since all regulatory issues will be resolved by then, let alone that the hardest sale (i.e., the first sale) will be done
 - Hire one extra salesperson and another tech support person every year to increases sales
 - Increase spending on travel, ad material, trade shows, and website maintenance
 - Expected numbers of customers are 3 & 7 in years 2 & 3, respectively

We will assume three time periods over only 3 years

• COCA Calculation:

	Year 1	Year 2	Year 3
Salespeople Salaries	\$175K × 1 = \$175K	\$175K × 2 = \$350K	\$175K × 3 = \$525K
Tech Support People Salaries	\$125 × 1 = \$125K	\$125 × 2 = \$250K	\$125 × 3 = \$375K
Travel	\$24,000	\$40,000	\$52,500
Ad Material	\$15,000	\$24,000	\$30,000
Events	\$30,000	\$35,000	\$40,000
Website Cost	\$10,000	\$10,000	\$10,000
Consultant	\$150,000	\$0	\$0
TMSE	TMSE(1) = \$394,000	TMSE(2) = \$709,000	TMSE(3) \$1,032,500

• COCA Calculation:

	Year 1	Year 2	Year 3
TMSE	TMSE(1) = \$394,000	TMSE(2) = \$709,000	TMSE(3) \$1,032,500
NC	NC(1) = 1	NC(2) = 3	NC(3) = 7
IBSE	IBSE(1) = \$0	IBSE(2) = \$20,000	IBSE(3) = \$60,000
COCA	COCA(1) = \$394K	COCA(2) = (\$709K- \$20K)/3 = \$229.666K	COCA(3) = (\$1,032,500- \$60K)/7 = \$138.928K

- 1. While very powerful, use direct sales judiciously as it is very expensive
 - Hiring a team to do direct sales may be necessary to start, but it is expensive
 - Consider investing in *technological enablers* (e.g., telemarketing, effective web presence, social media, etc.,)
 - Automate as much as possible via creating *incentive schemes* for your users to recruit others (e.g., Groupon & Uber)
 - Multi-Level Marketing (MLM), whereby a company makes revenue from *non-salaried workforce* (called *participants*), who sell its products and earn via a pyramid-shaped *commission system* is controversial (e.g., Avon)

- 2. Improve *conversion rate* in sales
 - Not every desired deal is closed, although (huge) cost is usually associated with every chased deal
 - Increasing your rate of closing deals (e.g., improving your conversion rate) compensates for costs and opens up the funnel for more deals to get through
 - One way to achieve this is to decrease the cost and enhance the quality of *leads* (e.g., you can use HubSpot's *inbound marketing strategy*)
- 3. Choose your business model with COCA in mind
 - Your business model might make it easier to sell your product to customers (e.g., IntraLink); hence, decreasing the *sales cycle length*

4. Drive positive word-of-mouth

- This can improve you company's stature and let you easily cross the chasm towards the mainstream market
- Focus on your beachhead market and employ the viral engine of growth (more on this next week)
- One way to measure results is to use the *Net Promoter Score* or *NPS*
 - How likely is it that you would recommend a product to a friend or colleague?
 - Respondents can be categorized into *three* groups:
 - 1) Promoters (score 9-10) are loyal enthusiasts who will keep buying and refer others, fueling growth

- 4. Drive positive word-of-mouth
 - This can improve you company's stature and let you easily cross the chasm towards the mainstream market
 - Focus on your beachhead market and employ the viral engine of growth (more on this next week)
 - One way to measure results is to use the *Net Promoter Score* or *NPS*
 - How likely is it that you would recommend a product to a friend or colleague?
 - Respondents can be categorized into *three* groups:
 - 2) Passives (score 7-8) are satisfied but unenthusiastic customers who are vulnerable to competitive offerings

- 4. Drive positive word-of-mouth
 - This can improve you company's stature and let you easily cross the chasm towards the mainstream market
 - Focus on your beachhead market and employ the viral engine of growth (more on this next week)
 - One way to measure results is to use the *Net Promoter Score* or *NPS*
 - How likely is it that you would recommend a product to a friend or colleague?
 - Respondents can be categorized into *three* groups:
 - **3) Detractors** (score 0-6) are unhappy customers who can damage your brand and impede growth through negative word-of-mouth
 - **NPS** = % of Promoters % of Detractors

Summary

- LTV and COCA allow you to determine whether the financials of your business will work
- They highlight the importance of keeping an eye on key factors to make your business profitable
- They provide simple scoreboard than the three core financial statements (which we will cover later in the semester)
- Recommendation: Do not let your optimism blind your from doing the right calculations of and using LTV and COCA

Next Class

• Product development: the lean approach